胡渊鸣:import 一个“太极”库,让 Python 代码提速100倍!

丰色 发自 凹非寺 量子位 | 公众号 QbitAI

众所周知,Python的简单和易读性是 靠牺牲性能为代价的——

尤其是在计算密集的情况下,比如多重for循环。

不过现在,大佬 胡渊鸣说了:

只需import 一个叫做“Taichi”的库,就可以把代码速度 提升100倍

不信?

来看三个例子。

计算素数的个数,速度x120

第一个例子非常非常简单,求所有小于给定正整数N的素数。

标准答案如下:

我们将上面的代码保存,运行。

当N为100万时,需要2.235s得到结果:

现在,我们开始施魔法。

不用更改任何函数体,import“taichi”库,然后再加两个装饰器:

Bingo! 同样的结果只要0.363s,快了将近6倍。

如果N=1000万,则只要0.8s;要知道,不加它可是55s,一下子又快了70倍

不止如此,我们还可以在ti.init中加个参数变为ti.init(arch=ti.gpu) ,让taich在 GPU上进行计算。

那么此时,计算所有小于1000万的素数就只耗时0.45s了,与原来的Python代码相比速度就 提高了120倍

厉不厉害?

什么?你觉得这个例子太简单了,说服力不够?我们再来看一个稍微复杂一点的。

动态规划,速度x500

动态规划不用多说,作为一种优化算法,通过动态存储中间计算结果来减少计算时间。

我们以经典教材《算法导论》中的经典动态规划案例 “最长公共子序列问题(LCS)”为例。

比如对于序列a = [0, 1, 0, 2, 4, 3, 1, 2, 1]和序列b = [4, 0, 1, 4, 5, 3, 1, 2],它们的LCS就是:

LCS(a, b) = [0, 1, 4, 3, 1, 2]。

用动态规划的思路计算LCS,就是先求解序列a的前i个元素和序列b的前j个元素的最长公共子序列的长度,然后逐步增加i或j的值,重复过程,得到结果。

我们用f[i, j]来指代这个子序列的长度,即LCS((prefix(a, i), prefix(b, j)。其中prefix(a, i) 表示序列a的前i个元素,即a[0], a[1], …, a[i - 1],得到如下递归关系:

完整代码如下:

现在,我们用Taichi来加速:

结果如下:

胡渊鸣电脑上的程序 最快做到了0.9秒内完成,而 换成用NumPy来实现,则需要476秒,差异达到了超500倍!

最后,我们再来一个不一样的例子。

反应 - 扩散方程,效果惊人

自然界中,总有一些动物身上长着一些看起来无序但实则并非完全随机的花纹。

图灵机的发明者艾伦·图灵是第一个提出模型来描述这种现象的人。

在该模型中,两种化学物质 (U和V)来模拟图案的生成。这两者之间的关系类似于猎物和捕食者,它们自行移动并有交互:

  1. 最初,U和V随机分布在一个域上;
  2. 在每个时间步,它们逐渐扩散到邻近空间;
  3. 当U和V相遇时,一部分U被V吞噬。因此,V的浓度增加;
  4. 为了避免U被V根除,我们在每个时间步添加一定百分比 (f) 的U并删除一定百分比 (k) 的V。

上面这个过程被概述为“反应-扩散方程”:

其中有四个关键参数:D u (U的扩散速度),D v (V的扩散速度),f (feed的缩写,控制U的加入)和k (kill的缩写,控制V的去除)

如果Taichi中实现这个方程,首先创建网格来表示域,用vec2表示每个网格中U, V的浓度值。

拉普拉斯算子数值的计算需要访问相邻网格。为了避免在同一循环中更新和读取数据,我们应该创建两个形状相同的网格W×H×2。

每次从一个网格访问数据时,我们将更新的数据写入另一个网格,然后切换下一个网格。那么数据结构设计就是这样:

一开始,我们将U在网格中的浓度设置为 1,并将V放置在50个随机选择的位置:

那么实际计算就可以用不到10行代码完成:

@ti.kernel

defcompute(phase: int):

fori, j inti.ndrange(W, H):

cen = uv[phase, i, j]

lapl = uv[phase, i + 1, j] + uv[phase, i, j + 1] + uv[phase, i - 1, j] + uv[phase, i, j - 1] - 4.0* cen

du = Du * lapl[ 0] - cen[ 0] * cen[ 1] * cen[ 1] + feed * ( 1- cen[ 0])

dv = Dv * lapl[ 1] + cen[ 0] * cen[ 1] * cen[ 1] - (feed + kill) * cen[ 1]

val = cen + 0.5* tm.vec2(du, dv)

uv[ 1- phase, i, j] = val

在这里,我们使用整数相位 (0或1)来控制我们从哪个网格读取数据。

最后一步就是根据V的浓度对结果进行染色,就可以得到这样一个 效果惊人的图案

有趣的是,胡渊鸣介绍,即使V的初始浓度是随机设置的,但每次都可以得到相似的结果。

而且和只能达到30fps左右的Numba实现比起来,Taichi实现由于可以选择GPU作为后端,轻松超过了 300fps。

pip install即可安装

看完上面三个例子,你这下相信了吧?

其实,Taichi就是一个嵌入在Python中的DSL (动态脚本语言),它通过自己的编译器将被 @ti.kernel 装饰的函数编译到各种硬件上,包括CPU和GPU,然后进行高性能计算。

有了它,你无需再羡慕C++/CUDA的性能。

正如其名,Taichi就出自太极图形胡渊鸣的团队,现在你只需要用pip install就能安装这个库,并与其他Python库进行交互,包括NumPy、Matplotlib和PyTorch等等。

当然,Taichi用起来和这些库以及其他加速方法有什么差别,胡渊鸣也给出了详细的优缺点对比,感兴趣的朋友可以戳下面的链接详细查看:

https://docs.taichi-lang.org/blog/accelerate-python-code-100x

END

官方站点:www.linuxprobe.com

Linux命令大全:www.linuxcool.com

(新群,火热加群中……)返回搜狐,查看更多

责任编辑:

平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
阅读 ()